[Contribution No. 53 from the Thermodynamics Laboratory, Petroleum Experiment Station, Bureau of Mines]

Cycloheptane, Cycloöctane and 1,3,5-Cycloheptatriene. Low Temperature Thermal Properties, Vapor Pressure and Derived Chemical Thermodynamic Properties

By H. L. Finke, D. W. Scott, M. E. Gross, J. F. Messerly and Guy Waddington Received July 16, 1956

From determinations of the low temperature thermal properties and vapor pressure of cycloheptane, cycloöctane and $1,3,5-$ cycloheptatriene, values of the entropy in the liquid and vapor states and the heat of vaporization, all at $298.16^{\circ} \mathrm{K}$., were obtained. These results and values of the heats of formation derivable from literature data were used to compute values of $\Delta H \mathrm{f}^{\circ}, \Delta F \mathrm{f}^{\circ}, \Delta S \mathrm{f}^{\circ}$ and $\log _{10} \mathrm{Kf}$ for all three compounds in the liquid and vapor states at $298.16^{\circ} \mathrm{K}$. In the solid state the thermal behavior of each substance is complex; there are transitions between four different crystalline forms of cycloheptane, three of cycloöctane and two of 1,3,5-cycloheptatriene.

Studies of low temperature thermal properties have been reported for several of the simpler saturated and unsaturated cyclic hydrocarbons: cyclopropane, ${ }^{1}$ cyclobutane, ${ }^{2}$ cyclopentane, ${ }^{3}$ cyclohexane, ${ }^{4}$ cyclopentene, ${ }^{5}$ cyclohexene ${ }^{5}$ and cycloöctatetraene. ${ }^{6}$ In this research similar studies wer made with three more cyclic hydrocarbons: the two saturated cycloalkanes, cycloheptane and cycloöctane and the unsaturated compound 1,3,5cycloheptatriene (hereafter simply called cycloheptatriene).

Current interest in higher cyclic structures and the recent identification of cycloheptane in petroleum ${ }^{7}$ suggest the need of thermodynamic data for these compounds with seven- and eight-membered rings. Details of the molecular structure of cycloheptatriene, such as the configuration of the ring (planar or non-planar) are unknown at present. The calorimetric value of the entropy reported here may contribute to the eventual determination of the molecular structure.

The results of low temperature calorimetric studies and vapor pressure determinations for each of the three compounds will be reported in detail later in the Experimental sections. However, the most significant results are values of the entropy in the liquid and vapor states and the heat of vaporization, all at $298.16^{\circ} \mathrm{K}$., as given in Table I. These values and thermochemical data from the literature were used to compute, for all three compounds, values of the standard heat, free energy, entropy and logarithm of the equilibrium constant of formation for the liquid and vapor states at $298.16^{\circ} \mathrm{K}$. These calculations of the chemical thermodynamic properties will be discussed in detail in the next section.

Chemical Thermodynamic Properties.-Kaarsemaker and Coops ${ }^{8}$ and also Spitzer and Huffman ${ }^{9}$
(1) R. A. Ruehrwein and T. M. Powell, This Journal, 68, 1063 (1946).
(2) G. W. Rathjens, Jr., and W. D. Gwinn, ibid., 75, 5629 (1953).
(3) J. G. Aston, H. L. Finke and S. C. Schumann, ibid.. 65, 3+1 (1943); D. R. Douslin and H. M. Huffman, ibid., 68, 173 (1946): G. J. Szasz. J. A. Morrison, E. L. Pace and J. G. Aston, J. Chem. Phys.. 15, 562 (1947).
(4) (a) J. G. Aston, G. J. Szasz and H. L. Finke, This Journal, 65 1135 (1943) ; (b) R. A. Ruehrwein and H. M. Huffman, ibid., 65, 1620 (1943).
(5) H. M. Hufiman, M. Eaton and G. D. Oliver, ibid., 70, 2911 (1948).
(6) D. W. Scott, M. E. Gross, G. D. Oliver and H. M. Huffman. ibid., 71, 1634 (1949).
(7) American Petroleum Institute Research Project 6 at the Carnegie Institute of Technology, unpublished results.
(8) S. Kaarsemaker and J. Coops, Rec. trav. chim., 71, 261 (1952).
(9) R. Spitzer and H. M. Huffman, This Journal, 69, 211 (1947).

TABLE I
Molal Entropy of Liquid and Vapor and Heat of Vaporization at $298.16^{\circ} \mathrm{K}$.

	$S_{\text {satd. }}$ (liquid). ${ }^{a}$ cal. deg. ${ }^{-1}$	S° (vapor). cal. deg. ${ }^{-1}$	$\begin{gathered} \Delta H v^{\circ} \\ \text { cal. } \end{gathered}$
Cycloheptane	57.97 ± 0.12	81.82 ± 0.30	$9210=50$
Cycloöctane	62.62 ± 0.12	87.66 ± 0.30	$10360=50$
Cycloheptatriene	51.30 ± 0.10	75.44 ± 0.25	$9250=50$

have determined the heats of combustion of cycloheptane and cycloöctane. The data obtained in the two investigations agree moderately well. However, the samples studied by Spitzer and Huffman were apparently of lower purity as indicated by the melting points (-12.2° for $\mathrm{C}_{7} \mathrm{H}_{14}$ and 14.5° for $\mathrm{C}_{8} \mathrm{H}_{16}$; values for pure compounds: -8.1° and 14.8°). The results of Kaarsemaker and Coops were therefore accepted. Values of the standard heat of formation in the liquid state at $298.16^{\circ} \mathrm{K}$. were calculated for cycloheptane and cycloöctane from these heat of combustion data and values of the standard heat of formation of liquid water ${ }^{10}$ and carbon dioxide. ${ }^{11}$ Values of the standard heat of formation in the ideal gaseous state were obtained by addition of the values of $\Delta H \mathrm{v}^{\circ}$ from Table I to the values of heat of formation in the liquid state. Conn, Kistiakowsky and Smith ${ }^{12}$ determined calorimetrically the heat of the vapor phase hydrogenation of cycloheptatriene to cycloheptane. They report $\Delta \dot{H}_{355}=-72.85$ $\pm 0.30 \mathrm{kcal} . \mathrm{mole}^{-1}$. To obtain the value of $\Delta H^{\circ}{ }_{298.16}$, two assumptions were made: (a) that the value of Conn, et al., does not differ significantly from the standard heat of the hydrogenation reaction and (b) that ΔC_{p} for the hydrogenation reaction has the constant value of -15 cal . deg. ${ }^{-1}$ mole ${ }^{-1}$ between 298.16 and $355^{\circ} \mathrm{K}$. The value obtained for $\Delta H^{\circ}{ }_{298.16}$ is -71.99 kcal . mole ${ }^{-1}$. This value and the value of $\Delta H \mathrm{f}^{\circ}$ for cycloheptane vapor yield a value of $\Delta H f^{\circ}$ for cycloheptatriene vapor. Subtraction of the value of $\Delta H \mathrm{v}^{\circ}$ from Table I gives the value of $\Delta H f^{\circ}$ for liquid cycloheptatriene. The derived values of $\Delta H f^{\circ}$ for all three substances in the liquid and vapor states are listed in the second column of Table II.
Values of the standard entropy of formation, $\Delta S \mathrm{f}^{\circ}$, were calculated from the values of entropy
(10) D. D. Wagman, J. E. Kilpatrick, W. J. Taylor, K. S. Pitzer and F. D. Rossini, J. Rerearch Nall. Bur. Standards. 34, 143 (1945).
(11) E. J. Prosen, R. S. Jessup and F. D. Rossini, ibid., 33, 447 (1944).
(12) J. B. Conn, G. B. Kistiakowsky and E. A. Smith. This JourNAL, 611868 (1939).
in Table I and values of the entropy of graphite and hydrogen. ${ }^{10}$ Values of the standard free energy of formation, $\Delta F \mathrm{f}^{\circ}$, and of the common logarithm of the equilibrium constant of formation, $\log _{10}$ $K \mathrm{f}$, were calculated from the values of $\Delta H \mathrm{f}^{\circ}$ and $\Delta S \mathrm{f}^{\circ}$. The calculated values of $\Delta S \mathrm{f}^{\circ}, \Delta F \mathrm{f}^{\circ}$ and $\log _{10} \mathrm{Kf}$ are listed in the last three columns of Table II.

Table II
Molal Chemical Thermodynamic Properties at 298.16°

K.				
	$\underset{\text { \& cal }}{\Delta H f^{\circ}}$	$\begin{aligned} & \Delta F \mathrm{f}^{0}, \\ & \text { kcal. } \end{aligned}$		${ }_{\text {logie }} \mathrm{Kf}$
C'ycloheptane (liquid)	-37.73	+12.96	-170.03	- 9.50
Cycloheptane (vapor)	-28.52	+15.06	-146.18	-11.04
Cycloöctane (liquid)	-40.42	+18.60	-197.96	-13.64
Cycloöctane (vapor)	-30.06	+21.50	- 172.92	-15.76
Cycloheptatriene (liquid)	+34.22	+58.99	- 83.07	-43.24
Cycloheptatriene (vapor)	+43.47	+61.04	- 58.93	-44.74

Thermal Behavior in the Solid State.-In common with most of the cyclic hydrocarbons that have been studied previously, ${ }^{2-5}$ cycloheptane, cycloöctane and cycloheptatriene all exhibit complex thermal behavior in the solid state. Details, such as heats and temperatures of transition and the heat capacity of different crystalline forms, will be reported in the Experimental sections to follow. However, a general idea of the thermal behavior in the solid state may be obtained by reference to Fig. 1 , in which the heat capacity of all three substances

Fig. 1.-Heat capacity of cycloheptane, cycloöctane and cycloheptatriene as a function of temperature. The vertical scales are offset for clarity.
is plotted as a function of temperature. Cycloheptane exists in four different crystalline forms. Crystals II of cycloheptane could be supercooled readily through the transition regions at 198.2 (II-III) and $134.8^{\circ} \mathrm{K}$. (III-IV), but subsequent warming of the supercooled crystals II to temperatures above $134.8^{\circ} \mathrm{K}$. always yielded crystals III. Crystals III were also obtained by slow cooling (over a period of about one week) through the $198.2^{\circ} \mathrm{K}$. transition temperature. Cycloöctane exists in three crystalline forms; the transitions occur readily. Cycloheptatriene exists in only two crystalline forms, but the form stable at low temperatures has an anomalous curve of heat capacity $v s$. temperature. In the range $82-92^{\circ} \mathrm{K}$., the heat capacity changes to a higher level in a short temperature interval in a manner characteristic of organic glasses. The transition to the form stable at higher temperatures is preceded by a range of rapidly increasing heat capacity. This behavior of cycloheptatriene is strikingly parallel to that of cyclopentene. ${ }^{5}$ It is unlikely that the $82-92^{\circ} \mathrm{K}$. anomaly involved "freezing in" of any disorder to produce residual entropy at very low temperatures. If the crystals did have residual entropy, the calorimetric values of the entropy would be uncertain by more than the experimental uncertainties listed for cycloheptatriene in Table I.

Cycloheptane, cycloöctane and cycloheptatriene all have small heats of fusion. The simpler saturated cyclic hydrocarbons, cyclobutane, cyclopentane and cyclohexane, likewise have small heats of fusion. ${ }^{2-4}$ Studies of these latter compounds by X-ray crystallography ${ }^{13-15}$ show a high degree of "rotational" disorder in the crystal form of each that is stable immediately below the triple point. By analogy, crystal I of cycloheptane and cyclooctane are expected to have "rotational" disorder. Crystals I of cycloheptatriene are known to be a highly disordered cubic phase. ${ }^{16}$
"Vapor Snake" Phenomenon.-Before introducing the samples into calorimeters for low temperature studies, the samples were thoroughly degassed by successive cycles of freezing, pumping and thawing. In the cases of cycloheptane and cycloöctane, after the initial removal of gas (mainly air), the phenomenon of "vapor snake" formation reported by Phibbs and Schiff ${ }^{17}$ was observed during the freezing. Qualitatively, the rate of "vapor snake" formation seemed to increase with decreasing amounts of non-condensable gas present. The rate of formation of the "snake" in thoroughly degassed material was approximately that observed by Phibbs and Schiff with cyclohexane. The "vapor snake" phenomenon has been observed in this Laboratory with other compounds that have relatively high melting points and low cryoscopic constants.

Experimental

The values reported in this paper are based on the 1951 International Atomic Weights ${ }^{18}$ and the following relations:
(13) G. F. Carter and I. H. Templeton, Acta Cryst. 6, 805 (1953).
(14) B. Post. R. S. Schwartz and I. Fankuehen, This Jourval. 73, 5113 (1951).
(15) T. Oda, X-Sen (X-Rays), 5, 26 (1948): cf. C. A., 44, 5179 (1950).
(18) T. B. Reed and W. N. Lipscomb, Acta Cryst., 6, 108 (1953).
(17) M, K. Phibbs and H. I. Schiff, J. Chem. Phys., 17, 843 (1949).
(18) E. Wichers, This Journal. 74, 2447 (1952).
$0^{\circ}=273.16^{\circ} \mathrm{K}$. and I cal. $=4.1840$ abs. $\mathrm{j} .=4.1833 \mathrm{int} . \mathrm{j}$. Measurements of temperature were made with platinum resistance thermometers calibrated in terms of the International Temperature Scale ${ }^{19}$ between 90 and $470^{\circ} \mathrm{K}$. and the provisional scale ${ }^{20}$ of the National Bureau of Standards between 11 and $90^{\circ} \mathrm{K}$. Measurements of mass, energy and temperature were made in terms of standard devices calibrated at the National Bureau of Standards.

The Materials.-The samples of cycloheptatriene and cycloheptane used in this investigation were supplied through the courtesy of Dr. W. E. Doering of the Hickrill Chemical Research Foundation, Inc. The cycloheptatriene, synthesized by reaction of diazomethane with benzene, had been distilled through a 12 -foot, glass, helix-packed column at slightly reduced pressure. The sample was a center cut of about 75 g . from 400 g . that had the same index of refraction. The index of refraction at 20° was determined by D. M. Richardson of the Chemistry and Refining Branch of this station for five wave lengths with the following results.
Wave length,
$\begin{array}{llllll}\AA . & 6562.8 & 5892.6 & 5460.7 & 4861.3 & 4358.3\end{array}$ $\begin{array}{llllll}n \text { at } 20^{\circ} & 1.51845 & 1.52394 & 1.52881 & 1.53839 & 1.55069\end{array}$

The cycloheptane had been prepared by the reduction of cycloheptatriene with hydrogen in the presence of platinum catalyst and subsequent fractional distillation in a concentric tube column of more than 100 theoretical plates. The refractive index of the sample used in this investigation was $n^{25} \mathbf{D} 1.4430$.
The cycloöctane sample, obtained from General Aniline \& Film Corp. through the courtesy of Dr. J. H. Bruun, had been prepared by hydrogenation of cycloöctatetraene. This material was further purified by the Chemistry and Refining Branch of this station by distillation in a Podbielniak 8$\mathrm{mm} . \times 12$-inch '"Heli-grid"' packed column. The refractive index of the purified sample was $n^{20_{\mathrm{D}}} 1.45849$.
The Heat Capacity in the Solid and Liquid States.-The low temperature calorimetric studies were made in the apparatus described by Ruehrwein and Huffman. ${ }^{4 b}$ The calorimeters used were made of copper and contained horizontal disks to facilitate attainment of thermal equilibrium and to prevent settling of the solid phase during fusion experiments. The experimental values of heat capacity in the solid and liquid states are listed in Table III. In this table T is the mean temperature of each heat capacity measurement, ΔT is the temperature increment employed and $C_{\text {satd }}$. is the heat capacity of the condensed phase under its own vapor pressure. Over the temperature range studied, $C_{\text {sstd }}$. does not differ significantly from C_{p}, the heat capacity at constant pressure. The temperature increments were maintained small enough that corrections for curvature were unnecessary. The values of $C_{\text {sadd }}$. immediately below the melting points are not corrected for premelting caused by impurities. The chronological sequence of measurements is not indicated in Table III. Generally, the precision of the results was within $\pm 0.1 \%$; it is estimated that above $30^{\circ} \mathrm{K}$. the accuracy uncertainty is not greater than 0.2%. The values of heat capacity for the liquids may be represented by the following empirical equations. The units are $C_{\text {satd }}$. in cal. deg. ${ }^{-1}$ mole ${ }^{-1}$ and T in ${ }^{\circ} \mathrm{K}$.

Table III					
Molal Heat Capacity in Cal. Deg. ${ }^{-1}$					
$T .{ }^{\circ} \mathrm{K}$.	ΔT	$C_{\text {sat }}$	$T,{ }^{\circ} \mathrm{K}$.	ΔT	$C_{B 8 t d}$.
Cycloheptane					
	ystals I		143.57	5.512	28.370
11.52	1.195	0.598	148.64	7.344	28.552
12.08	2.004	0.696	149.05	5.451	28.599
12.75	1.284	0.837	156.83	9.029	28.905
13.88	1.617	1.078	164.55	10.317	29.143
14.15	1.525	1.147	165.96	9.239	29.326
15.61	1.848	1.510	170.73	9.052	29.561
15.71	1.602	1.522	174.75	10.066	29.785
17.26	1.475	1.931	175.68	10.192	29.839

[^0]| 17.60 | 2.113 | 2.015 | 176.81 | 10.028 | 29.810 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18.89 | 1.782 | 2.384 | 180.25 | 9.980 | 30.105 |
| 19.73 | 2.136 | 2.635 | 184.37 | 9.833 | 30.271 |
| 20.75 | 1.921 | 2.921 | 184.70 | 9.847 | 30.396 |
| 22.03 | 2.451 | 3.295 | 184.92 | 9.819 | 30.374 |
| 23.02 | 2.623 | 3.582 | 188.55 | 10.722 | 30.607 |
| 24.59 | 2.626 | 4.039 | 189.37 | 15.153 | 30.674 |
| 25.57 | 2.451 | 4.296 | 189.56 | 8.638 | 30.658 |
| 27.42 | 3.035 | 4.811 | 190.13 | 9.779 | 30.705 |
| 28.09 | 2.595 | 4.990 | 191.09 | 8.527 | 30.770 |
| 30.46 | 3.054 | 5.610 | 193.03 | 7.475 | 30.929 |
| 33.53 | 3.072 | 6.380 | 194.14 | 8.499 | 30.978 |
| 36.61 | 3.094 | 7.081 | 194.98 | 10.705 | 31.063 |
| 39.88 | 3.448 | 7.759 | Crystals II | | |
| 43.78 | 4.355 | 8.523 | 202.92 | 4.811 | 31.509 |
| 47.92 | 3.908 | 9.261 | 203.23 | 2.618 | 31.531 |
| 52.09 | 4.444 | 9.957 | 204.27 | 4.117 | 31.619 |
| 55.75 | 4.957 | 10.519 | 206.84 | 4.061 | 31.804 |
| 56.74 | 4.864 | 10.683 | 207.20 | 3.245 | 31.733 |
| 60.87 | 5.274 | 11.296 | 208.24 | 2.064 | 31.983 |
| 66.28 | 5.542 | 12.057 | 208.37 | 4.076 | 31.950 |
| 72.04 | 5.993 | 12.807 | Crystals I | | |
| 75.85 | 6.875 | 13.300 | 215.70 | 3.149 | 31.681 |
| 78.28 | 6.485 | 13.618 | 219.61 | 4.684 | 31.943 |
| 82.47 | 6.371 | 14.164 | 225.04 | 6.175 | 32.330 |
| 84.97 | 6.889 | 14.486 | 226.45 | 10.249 | 32.449 |
| 88.65 | 5.990 | 14.934 | 232.10 | 7.939 | 32.886 |
| 91.65 | 6.478 | 15.290 | 234.06 | 9.908 | 33.000 |
| 96.72 | 6.784 | 15.852 | 235.8 | 3.907 | 33.065 |
| 98.74 | 7.706 | 16.096 | 236.58 | 10.024 | 33.268 |
| 103.34 | 6.443 | 16.631 | 242.82 | 6.162 | 33.743 |
| 106.23 | 7.287 | 16.971 | 244.32 | 10.627 | 33.906 |
| 109.64 | 6.160 | 17.358 | 249.36 | 6.908 | 34.359 |
| 115.67 | 5.910 | 18.093 | 255.25 | 4.869 | 34.887 |
| 116.19 | 5.736 | 18.167 | 260.09 | 4.811 | 35.382 |
| 116.60 | 7.787 | 18.207 | | Liquid | |
| 121.47 | 5.693 | 18.805 | 269.3 | 6.665 | 40.582 |
| 123.75 | 6.505 | 19.084 | 272.92 | 5.136 | 40.907 |
| 125.94 | 7.164 | 19.364 | 276.34 | 7.398 | 41.198 |
| 127.07 | 5.496 | 19.510 | 278.87 | 6.770 | 41.431 |
| 129.68 | 5.364 | 19.877 | 284.89 | 9.698 | 41.983 |
| | stals | | 293.32 | 7.157 | 42.754 |
| 138.49 | 4.643 | 28.167 | 300.42 | 7.060 | 43.407 |
| Cycloöctane | | | | | |
| | stals | | 127.69 | 6.231 | 21.051 |
| 11.34 | 1.251 | 0.608 | 127.89 | 6.308 | 21.071 |
| 11.48 | 1.171 | 0.651 | 133.80 | 6.003 | 21.876 |
| 12.62 | 1.323 | 0.867 | 134.68 | 7.268 | 22,003 |
| 12.87 | 1.644 | 0.929 | 141.80 | 6.982 | 22.984 |
| 13.91 | 1.306 | 1.163 | 148.65 | 6.724 | 23.978 |
| 14.79 | 2.213 | 1.384 | 151.66 | 8.762 | 24.432 |
| 15.52 | 1.924 | 1.572 | 155.79 | 7.543 | 25.084 |
| 16.88 | 1.965 | 1.936 | 159.20 | 6.308 | 25.629 |
| 17.55 | 2.112 | 2.134 | Crystals II | | |
| 18.91 | 2.092 | 2.529 | 174.50 | 2.063 | 35.582 |
| 20.15 | 3.069 | 2.897 | 176.64 | 6.473 | 36.011 |
| 21.13 | 2.342 | 3.197 | 176.75 | 2.457 | 35.854 |
| 23.22 | 3.048 | 3.827 | 179.17 | 2.441 | 36.087 |
| 23.91 | 3.219 | 4.026 | 181.58 | 2.420 | 36.426 |
| 26.43 | 3.363 | 4.752 | Crystals I | | |
| 27.43 | 3.777 | 5.024 | 192.37 | 5.929 | 37.804 |
| 29.78 | 3.301 | 5.657 | 196.18 | 6.129 | 38.074 |
| 30.88 | 3.110 | 5.942 | 203.17 | 7.848 | 38.661 |
| 34.21 | 3.549 | 6.771 | 210.95 | 7.713 | 39.357 |
| 37.54 | 3.112 | 7.534 | 216.78 | 9.550 | 39.809 |
| 40.84 | 3.478 | 8.231 | 226.23 | 9.338 | 40.719 |

TABLE III					
T.	(Continued)				
${ }^{\circ} \mathrm{K}$.	ΔT	$C_{\text {satd. }}$	$T,{ }^{\circ} \mathrm{K}$	ΔT	$C_{\text {natd. }}$
44.79	4.408	9.006	235.47	9.152	41.585
48.98	3.965	9.764	244.54	8.976	42.451
53.21	4.504	10.502	254.30	10.549	43.435
55.84	6.666	10.934	254.88	3.424	43.238
57.54	4.134	11.219	259.30	5.408	43.903
62.15	5.937	11.972	264.73	10.319	44.499
68.37	6.481	12.904	265.47	6.937	44.546
74.58	5.955	13.836	272.81	10.178	45.341
80.34	5.550	14.700	273.20	8.522	45.417
86.15	6.071	15.566	280.40	4.994	46.236
86.67	5.279	15.649	281.64	8.366	46.369
92.05	5.740	16.363		Liquid	
92.23	5.840	16.388	294.61	4.627	51.140
97.93	5.562	17.131	295.56	7.633	51.241
103.75	6.066	17.906	299.71	4.588	51.624
109.68	5.806	18.681	303.88	9.019	52.102
115.38	5.580	19.435	312.83	8.878	53.007
121.45	6.566	20.242	321.64	8.735	53.959

Crystals II			109.86	5.287	17.176
11.34	0.461	0.866	111.53	5.717	17.424
12.06	0.952	1.040	113.84	7.326	17.751
12.87	1.058	1.214	11 . 23	5.467	17.960
13.28	1.454	1.328	117.57	6.358	18.333
14.04	1.285	1.495	120.96	6.912	18.918
14.78	1.517	1.687	121	6.079	18.924
15.38	1.389	1.834	124.1	6.864	19.534
16.32	1.537	2.068	124.36	6.843	19.571
16.94	1.693	2.242	130.22	9.676	20.916
17.87	1.533	2.468	130.	6.440	21.046
18.74	1.857	2.709	130.	6.418	21.053
19.51	1.725	2.908	137.06	6.012	22.741
20.82	2.280	3.264	138	7.830	23.416
21	2.164	3.432	143	6.211	25.402
23.23	2.508	3.897	145.48	5.192	27.326
23.	2.419	4.031		rystals	
25.80	2.638	4.532	157.35	5.397	29.090
26.50	3.039	4.720	159.72	5.404	29.201
28.65	3.031	5.238	162.71	5.343	29.299
31.90	3.462	5.967	165.02	6.446	29.320
35.51	3.745	6.717	166.21	6.294	29.435
39.36	3.961	7.417	168.03	5.300	29.463
43.92	5.159	8.131	171.42	6.375	29.574
49.24	5.476	8.892	177.76	6.305	29.790
54.46	4.951	9.546	184.04	6.249	30.028
54.96	4.140	9.615	188.9	8.326	30.256
78	9.951	9.824			
82	8.662	9.826	201.50	4.732	33.664
-	4.612	10.134	203.8	4.712	33.764
61.91	4.539	10.413	206.66	5.600	33.873
63.92	5.530	10.6 .54	212.25	5.582	34.118
64.15	4.999	10.688	217.81	5.537	34.370
66.58	9.643	10.937	223.78	6.406	34.640
67.62	5.284	11.056	230.61	7.252	34.952
69.31	5.330	11.251	237.83	7.175	35.331
74.17	7.789	11.748	245.82	8.865	35.738
74.79	5.611	11.838	254.65	8.750	36.216
80.78	5.407	12.519	264.20	10.346	36.764
80.86	3.582	12.533	269.12	10.077	37.075
85.22	3.413	13.156	274.47	10.181	37.393
88.92	5.779	14.019	279.13	9.925	37.684
88.94	4.024	14.019	288.98	9.775	38.309
95.05	6.475	15.010	298.68	9.626	38,937

```
        \(\begin{array}{llllll}101.34 & 6.100 & 15.934 & 302.75 & 9.485 & 39.220\end{array}\)
        \(\begin{array}{llllll}104.45 & 5.523 & 16.437 & 308.23 & 9.480 & 39.606\end{array}\)
        \(\begin{array}{llllll}105.67 & 6.001 & 16.604 & 312.16 & 9.327 & 39.880\end{array}\)
        \(107.29 \quad 5.791 \quad 16.814\)
            Cycloheptane ( \(\pm 0.05 \%, 265-300^{\circ} \mathrm{K}\).)
\(C_{\text {gatd. }}=17.231+8.309 \times 10^{-2} T+1.3348+10^{-5} T^{2}(1)\)
            Cycloöctane ( \(\pm 0.05 \%, 288-322^{\circ} \mathrm{K}\).)
\(C_{\text {atd. }}=36.127+2.350 \times 10^{-3} T+1.6500 \times 10^{-4} T^{2}(2)\)
            Cycloheptatriene ( \(\pm 0.1 \%, 198-312^{\circ} \mathrm{K}\).)
\(C_{\text {satd. }}=35.309-6.6933 \times 10^{-2} T+3.4778 \times\)
                                    \(10^{-4} T^{2}-2.7778 \times 10^{-7} T^{3}\)

The Heat of Fusion and Cryoscopic Constants.-Duplicate determinations of the heats of fusion of each compound were made, with the results listed in Table IV, column 3. For calculating these values of \(\Delta H_{\text {fusion }}\) approximate corrections were applied for the effect of premelting caused by impurities. Kaarsemaker and Coops \({ }^{8}\) report values \(( \pm 5 \%)\) of 453 and 601 cal. mole \({ }^{-1}\) for the heats of fusion of cycloheptane and cycloöctane, respectively.

Values of the first and second cryoscopic constants, \(A=\) \(\Delta H_{\text {funion }} / R T_{\text {T.P. }}{ }^{2}\) and \(B=1 / T_{\text {T.P. }}-\Delta C_{\text {fusion }} / 2 \Delta H_{\text {fusion }}\), calculated from the observed values oi \(\Delta H_{\text {fusion }}\) and values of the triple point temperature, \(T_{\mathbf{T} . \mathbf{P}}\), and of \(\Delta C_{\text {fusion }}\), are also listed in Table IV.

Table IV
Molal Heat of Fusion and Cryoscopic Constants
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
{ }^{T_{\mathrm{o}}^{\mathbf{T}} \mathbf{K} . \mathrm{P} .}
\] & \[
\begin{gathered}
\Delta H_{\text {fusion }}, \\
\text { cal. }
\end{gathered}
\] & \[
\stackrel{A,}{\text { deg. }}
\] & \[
\underset{\text { deg. }}{B,}
\] \\
\hline Cycloheptane & 265.12 & \(449.8 \pm 0.1^{a}\) & 0.00322 & -0.00100 \\
\hline Cycloobctane & 287.98 & \(575.9 \pm 0.0^{\text {a }}\) & . 00349 & +0.00041 \\
\hline Cycloheptatriene & 197.92 & \(277.4 \pm 0.2^{\text {a }}\) & . 00356 & -0.00046 \\
\hline
\end{tabular}
\({ }^{a}\) Deviation from the mean of duplicate determinations.
The Triple Point and Purity of Sample.-For determination of the triple point temperatures and purity of the samples a study of the "equilibrium' melting temperature, \(T_{\text {obsd }}\), as a function of fraction of total sample melted, \(F\), was made for each substance by the procedure outlined in an carlier publication. \({ }^{21}\) Table \(V\) presents the results of these studies. In each instance, plots of \(T_{\text {obsd }}\) vs, \(1 / F\) are not linear, as they would be if the impurities formed ideal solutions in the liquid and were insoluble in the solid. Instead, the plots deviate from linearity in the direction to be expected if the impurities formed a solid solution with the major component. The loosely bound crystal structures associated with the small heats of fusion of the three compounds are favorable to solid solution formation.

When impurities form a solid solution with the major component, a quantitative measure of sample purity cannot be obtained from calorimetric melting point studies, because (a) equilibrium may not be established between solid and liquid phases in the time of the measurements and (b) if there are several impurities with different distribution coefficients between solid and liquid, there are more unknowns than can be evaluated from the experimental data. However, a somewhat arbitrary value of sample purity may be calculated if it is assumed that (a) equilibrium is established between the liquid and solid phases and (b) that the impurity has a single value, less than 1 , of the Henry's law constant, \(K\), for distribution between the solid and liquid phases. A convenient method of treating calorimetric melting point data on the basis of these assumptions has been given by Mastrangelo and Dornte. \({ }^{22}\) Treatment of the data of Table \(V\) by this method leads to values of sample purity of 99.951 mole \(\%\) for cycloheptane, 99.982 mole \(\%\) for cycloöctane and 99.986 mole \(\%\) for cycloheptatriene. The values selected for the triple point temperatures are 265.12, 287.98 and \(197.92^{\circ} \mathrm{K} .\left(-8.04,+14.82\right.\) and \(\left.-75.24^{\circ}\right)\) for cycloheptane, cycloöctane and cycloheptatriene, respectively. For comparison, literature values of the melting points are: (a) cycloheptane, \(-8.1^{\circ 8}\) and \(-7.98^{\circ 12}\); (b) cycloöctane, \(14.8^{\circ 8}\) and \(14.5^{\circ 9}\); (c) cycloheptatriene, \(-79.49^{\circ} .{ }^{23}\)

\footnotetext{
(21) S. S. Todd, G. D. Oliver and H. M. Huffman, This Journal, 69, 1519 (1947).
(22) S. V. R. Mastrangelo and R. W. Dornte, ibid., 77, 6200 (1955)
(23) E. P. Kohler, M. Tishler, H. Potter and H. T. Thompson, ibid., 61, 1057 (1939).
}

Table V
Summary of Melting Point Studies \({ }^{a}\) Cycloheptane \(\begin{array}{ll}T_{\text {T.P. }}=265.12 \pm 0.05^{\circ} \mathrm{K} . & A=0.003220 \text { deg. }{ }^{-1} \\ K=0.249 & N_{2}{ }^{*}=0.000492 \text { mole fraction }\end{array}\)
\begin{tabular}{|c|c|c|c|}
\hline Melted, \% & \[
\left[\left({ }_{(1-K)}-K\right)\right]^{-1}
\] & Obsc. & Calcd. \({ }^{\text {b }}\) \\
\hline 13.65 & 2.136 & 264.785 & 264.793 \\
\hline 27.60 & 1.646 & . 869 & . 868 \\
\hline 51.56 & 1.180 & . 939 & . 939 \\
\hline 70.97 & . 960 & . 971 & . 972 \\
\hline 90.47 & . 809 & . 995 & . 995 \\
\hline 100.00 & . 751 & & 265.004 \\
\hline Pure & & & . 119 \\
\hline
\end{tabular}

Cycloöctane
\begin{tabular}{cccc}
\(T_{\text {T.P. }}=287.98 \pm 0.05^{\circ} \mathrm{K}\). & \multicolumn{2}{c}{\(A=0.003494\) deg. \({ }^{-\mathbf{1}}\)} \\
\(K=0.189\) & & \(N_{2}{ }^{*}=0.000183\) mole fraction \\
11.06 & 2.910 & 287.829 & 287.820 \\
58.73 & 1.219 & .921 & .919 \\
74.85 & 1.019 & .928 & .929 \\
94.18 & .851 & .938 & .938 \\
100.00 & .811 & & .940 \\
Pure & & & .983
\end{tabular}

Cycloheptatriene
\(T_{\text {T.P. }}=197.92 \pm 0.05^{\circ} \mathrm{K} . \quad A=0.003564 \mathrm{deg} .^{-1}\) \(K=0.128 \quad N_{2}^{*}=0.000143\) mole fraction
\begin{tabular}{rrrr}
11.49 & 3.821 & 197.766 & 197.764 \\
25.36 & 2.598 & .817 & .817 \\
49.85 & 1.550 & .854 & .855 \\
70.49 & 1.174 & .869 & .870 \\
89.11 & .963 & .879 & .878 \\
100.00 & .872 & & .882
\end{tabular}

Pure
\({ }^{a} T_{\mathrm{T} . \mathrm{p} .}\) is the triple point temperature, \(A\) is the first cryoscopic constant, \(K\) is the Henry's law constant for distribution of the impurity between the solid and liquid phases and \(N_{2}{ }^{*}\) is the mole fraction of impurity in the sample. \({ }^{b}\) Calculated from the relationship
\(T_{\text {obsd }}=T_{\text {T.P. }}-\left(N_{2}^{*} / A\right)[F+K /(I-K)]^{-1}\)
The Transition Temperatures and Heats of Transition. Transition temperatures were studied by transposing successive fractions of the form stable below the transition temperature and observing the equilibrium temperature. From a plot of equilibrium temperature \(v s\). fraction of the sample in the high temperature form, the temperature corresponding to \(100 \%\) transposed was determined and chosen as the transition temperature. Duplicate determinations were made of each heat of transition. The results are given in Table VI.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Table VI} \\
\hline \multicolumn{3}{|l|}{Transition Temperatures and Heats of} \\
\hline & \multicolumn{2}{|l|}{Transition
temp.,
\(\circ \mathrm{K}\).\(\quad\)\begin{tabular}{c} 
Heat of transition \\
cal. mole
\end{tabular}} \\
\hline Cycloheptane & 134.8 & \(1187.0 \pm 0.1^{\text {a }}\) \\
\hline & 198.2 & \(69.2 \pm 0.2^{\text {a }}\) \\
\hline & 212.4 & \(107.5 \pm 0.1^{\text {a }}\) \\
\hline Cycloöctane & 166.5 & \(1507.1 \pm 0.4^{\text {a }}\) \\
\hline & 183.8 & \(114.3 \pm 0.2^{\text {a }}\) \\
\hline Cycloheptatriene & 153.98 & \(560.9 \pm 0.0^{\text {a }}\) \\
\hline
\end{tabular}
a Deviation from the mean of duplicate determinations,
Collapse of Calorimeter Containing Cycloöctane.-The copper calorimeter that contained the cycloöctane sample was degassed before sealing by successive cycles of freezing, pumping and thawing. After rapid cooling to liquid air temperature and subsequent warming the calorimeter wall was partly collapsed as though by a contractive force. Similar damage to copper calorimeters has occurred in this Lab-
oratory with two other compounds that have a large heat of transition and a small heat of fusion: 1,1-dimethylcyclopentane and 2,2-dimethylbutane, \({ }^{24}\)

Thermodynamic Properties in the Solid and Liquid States.
-Values of the free energy function, heat content function, heat content and entropy at selected even temperatures are listed in Tables VII, VIII and IX, with smoothed values of

Table VII
Molal Thermodynamic Properties of Cycloheptane
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\stackrel{T}{{ }_{o}^{T}}
\] & \[
\begin{gathered}
-\left(F_{\text {ascd. }}-\right. \\
\left.H_{0}^{\circ}\right) / T . \\
\text { cal. } \\
\text { deg. }{ }^{-1}
\end{gathered}
\] & \[
\begin{gathered}
\left(H_{\text {sag td. }}-\right. \\
\left.H_{0}^{\sigma}\right) / T, \\
\text { cal. } \\
\text { deg. }^{-1}
\end{gathered}
\] & \[
\underset{\text { cal. }}{H_{\text {Batd }}-H_{0}^{\circ}}
\] & \(S_{\text {satd. }}\) cal. deg. \({ }^{-1}\) & Csatd., cal. deg. \({ }^{-}\) \\
\hline \multicolumn{6}{|c|}{Crystals IV} \\
\hline 10 & 0.03 & 0.11 & 1.07 & 0.14 & 0.43 \\
\hline 15 & 0.12 & 0.35 & 5.28 & 0.47 & 1.34 \\
\hline 20 & 0.27 & 0.77 & 15.32 & 1.04 & 2.71 \\
\hline 25 & 0.50 & 1.30 & 32.45 & 1.80 & 4.14 \\
\hline 30 & 0.78 & 1.89 & 56.57 & 2.67 & 5.50 \\
\hline 35 & 1.12 & 2.49 & 87.20 & 3.61 & 6.72 \\
\hline 40 & 1.49 & 3.09 & 123.5 & 4.58 & 7.78 \\
\hline 45 & 1.89 & 3.66 & 164.8 & 5.55 & 8.74 \\
\hline 50 & 2.30 & 4.22 & 210.8 & 6.52 & 9.62 \\
\hline 60 & 3.17 & 5.25 & 314.9 & 8.42 & 11.17 \\
\hline 70 & 4.05 & 6.19 & 433.6 & 10.24 & 12.54 \\
\hline 80 & 4.93 & 7.07 & 565.5 & 12.00 & 13.84 \\
\hline 90 & 5.82 & 7.89 & 710.4 & 13.71 & 15.10 \\
\hline 100 & 6.68 & 8.67 & 866.9 & 15.35 & 16.23 \\
\hline 110 & 7.55 & 9.41 & 1035 & 16.96 & 17.41 \\
\hline 120 & 8.39 & 10.13 & 1215 & 18.52 & 18.02 \\
\hline 130 & 9.23 & 10.83 & 1408 & 20.06 & 19.91 \\
\hline 134.8 & 9.63 & 11.16 & 1505 & 20.79 & 20.56 \\
\hline \multicolumn{6}{|c|}{Crystals III} \\
\hline 134.8 & 9.63 & 19.97 & 2692 & 29.60 & 28.04 \\
\hline 140 & 10.40 & 20.27 & 2838 & 30.67 & 28.23 \\
\hline 150 & 11.82 & 20.81 & 3122 & 32.63 & 28.61 \\
\hline 160 & 13.18 & 21.31 & 3410 & 34.49 & 29.04 \\
\hline 170 & 14.49 & 21.78 & 3703 & 36.27 & 29.54 \\
\hline 180 & 15.74 & 22.23 & 4001 & 37.97 & 30.09 \\
\hline 190 & 16.95 & 22.66 & 4305 & 39.61 & 30.70 \\
\hline 198.2 & 17.92 & 23.00 & 4559 & 40.92 & 31.26 \\
\hline \multicolumn{6}{|c|}{Crystals II} \\
\hline 198.2 & 17.92 & 23.35 & 4628 & 41.27 & 30.99 \\
\hline 200 & 18.12 & 23.43 & 4685 & 41.55 & 31.21 \\
\hline 210 & 19.28 & 23.81 & 5001 & 43.09 & 32.09 \\
\hline 212.4 & 19.55 & 23.91 & 5079 & 43.46 & 32.27 \\
\hline \multicolumn{6}{|c|}{Crystals I} \\
\hline 212.4 & 19.55 & 24.41 & 5186 & 43.96 & 31.47 \\
\hline 220 & 20.41 & 24.67 & 5427 & 45.08 & 31.98 \\
\hline 230 & 21.52 & 25.00 & 5751 & 46.52 & 32.72 \\
\hline 240 & 22.59 & 25.34 & 6082 & 47.93 & 33.54 \\
\hline 250 & 23.62 & 25.69 & 6422 & 49.31 & 34.41 \\
\hline 260 & 24.64 & 26.04 & 6770 & 50.68 & 35.38 \\
\hline 265.12 & 25.15 & 26.23 & 6952 & 51.38 & 35.92 \\
\hline \multicolumn{6}{|c|}{Liquid} \\
\hline 265.12 & 25.15 & 27.92 & 7402 & 53.07 & 40.21 \\
\hline 270 & 25.66 & 28.15 & 7601 & 53.81 & 40.65 \\
\hline 273.16 & 25.98 & 28.30 & 7731 & 54.28 & 40.93 \\
\hline 280 & 26.70 & 28.61 & 8011 & 55.31 & 41.54 \\
\hline 290 & 27.71 & 29.07 & 8431 & 56.78 & 42.46 \\
\hline 298.16 & 28.52 & 29.45 & 8780 & 57.97 & 43.20 \\
\hline 300 & 28.70 & 29.53 & 8860 & 58.23 & 43.36 \\
\hline
\end{tabular}
(24) M. E. Gross, G. D. Oliver and H. M. Huffman, This Journal,

75, 2801 (1953).

Table VIII
Molal Thermodynamic Properties of Cycloöctane
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\stackrel{T}{o_{\mathrm{K}}} .
\] & \[
\begin{gathered}
-\left(F_{\text {satd. }}-\mathbf{-}\right. \\
\left.H_{0}^{\circ}\right) / T . \\
\text { cal. } \\
\text { deg. }
\end{gathered}
\] & \[
\begin{gathered}
\left(H_{\text {sastd. }}-\right. \\
\left.H_{0}^{\circ}\right) / T, \\
\text { cal. } \\
\text { deg. } \\
\text { Crys }
\end{gathered}
\] & \[
\begin{aligned}
& H_{\text {satd. }}-H_{0}^{\circ}, \\
& \text { cal. } \\
& \text { tals III }
\end{aligned}
\] & Ssatd.. cal. deg. \({ }^{1}\) & \(C_{\text {astd. }}\) cal. deg. \({ }^{1}\) \\
\hline 10 & 0.04 & 0.11 & 1.14 & 0.15 & 0.46 \\
\hline 15 & 0.12 & 0.38 & 5.64 & 0.50 & 1.44 \\
\hline 20 & 0.29 & 0.81 & 16.27 & 1.10 & 2.85 \\
\hline 25 & 0.53 & 1.37 & 34.32 & 1.90 & 4.35 \\
\hline 30 & 0.83 & 1.98 & 59.61 & 2.81 & 5.71 \\
\hline 35 & 1.19 & 2.61 & 91.24 & 3.80 & 6.96 \\
\hline 40 & 1.57 & 3.22 & 128.8 & 4.79 & 8.06 \\
\hline 45 & 1.99 & 3.81 & 171.6 & 5.80 & 9.04 \\
\hline 50 & 2.42 & 4.38 & 219.2 & 6.80 & 9.95 \\
\hline 60 & 3.31 & 5.45 & 327.3 & 8.76 & 11.63 \\
\hline 70 & 4.23 & 6.44 & 451.1 & 10.67 & 13.15 \\
\hline 80 & 5.14 & 7.38 & 590.1 & 12.52 & 14.65 \\
\hline 90 & 6.07 & 8.27 & 744.0 & 14.34 & 16.10 \\
\hline 100 & 6.98 & 9.12 & 911.5 & 16.10 & 17.41 \\
\hline 110 & 7.89 & 9.93 & 1092 & 17.82 & 18.73 \\
\hline 120 & 8.79 & 10.72 & 1286 & 19.51 & 20.06 \\
\hline 130 & 9.68 & 11.48 & 1493 & 21.16 & 21.36 \\
\hline 140 & 10.55 & 12.24 & 1713 & 22.79 & 22.73 \\
\hline 150 & 11.42 & 12.99 & 1948 & 24.41 & 24.18 \\
\hline 160 & 12.29 & 13.73 & 2197 & 26.02 & 25.75 \\
\hline 166.5 & 12.85 & 14.22 & 2368 & 27.07 & 26.79 \\
\hline \multicolumn{6}{|c|}{Crystals II} \\
\hline 166.5 & 12.85 & 23.27 & 3875 & 36.12 & 34.62 \\
\hline \(1 \% 0\) & 13.34 & 23.51 & 3997 & 36.85 & 35.05 \\
\hline 180 & 14.69 & 24.19 & 4354 & 38.88 & 36.25 \\
\hline 183.8 & 15.20 & 24.44 & 4492 & 39.64 & 36.71 \\
\hline \multicolumn{6}{|c|}{Crystals I} \\
\hline 183.8 & 15.20 & 25.07 & 4607 & 40.27 & 37.08 \\
\hline 190 & 16.08 & 25.46 & 4838 & 41.54 & 37.57 \\
\hline 200 & 17.37 & 26.09 & 5218 & 43.46 & 38.40 \\
\hline 210 & 18.65 & 26.70 & 5606 & 45.35 & 39.26 \\
\hline 220 & 19.91 & 27.29 & 6003 & 47.20 & 40.16 \\
\hline 230 & 21.13 & 27.87 & 6409 & 49.00 & 41.07 \\
\hline 240 & 22.33 & 28.44 & 6825 & 50.77 & 42.02 \\
\hline 250 & 23.51 & 29.00 & 7250 & 52.51 & 43.00 \\
\hline 260 & 24.65 & 29.56 & 7685 & 54.21 & 44.01 \\
\hline 270 & 25.78 & 30.11 & 8130 & 55.89 & 45.05 \\
\hline 273.16 & 26.13 & 30.29 & 8274 & 56.42 & 45.07 \\
\hline 280 & 26.89 & 30.66 & 8586 & 57.55 & 46.11 \\
\hline 287.98 & 27.75 & 31.10 & 8957 & 58.85 & 46.95 \\
\hline \multicolumn{6}{|c|}{Liquid} \\
\hline 287.98 & 27.75 & 33.10 & 9533 & 60.85 & 50.48 \\
\hline 290 & 27.99 & 33.22 & 9635 & 61.21 & 50.68 \\
\hline 298.16 & 28.91 & 33.71 & 10052 & 62.62 & 51.50 \\
\hline 300 & 29.12 & 33.82 & 10147 & 62.94 & 51.68 \\
\hline 310 & 30.23 & 34.42 & 10669 & 64.65 & 52.71 \\
\hline 320 & 31.34 & 35.00 & 11201 & 66.34 & 53.78 \\
\hline 330 & 32.42 & 35.59 & 11744 & 68.01 & 54.86 \\
\hline
\end{tabular}
the heat capacity. The functions were computed by appropriate numerical integration of the experimental heat capacity data and the inclusion of the experimental values of the heat and entropy of transition and fusion. The thermodynamic properties at \(10^{\circ} \mathrm{K}\). were computed from Debye functions with the following parameters: for cycloheptane, 6 degrees of freedom with \(\theta=129.5^{\circ}\); for cycloöctane, 6.1 degrees of freedom with \(\theta=127.2^{\circ}\); for cycloheptatriene, 4 degrees of freedom with \(\theta=98.8^{\circ}\). The parameters of these Debye functions were evaluated from heat capacity data below \(30^{\circ} \mathrm{K}\). Approximate corrections for the effects of premelting caused by impurities have been applied to the

Table IX
Molal Thermodynamic Properties of Cycluheptatriene
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
T \\
{ }^{T} \mathrm{~K}
\end{gathered}
\] & \[
\begin{gathered}
-\left(F_{\text {satd, },}-\right. \\
\left.H_{0}^{\circ}\right) / T . \\
\text { cal. } \\
\text { deg. }{ }^{-1}
\end{gathered}
\] & \[
\begin{gathered}
\left(H_{s \mathrm{std}}-\right. \\
\left.H_{0}^{\mathrm{o}}\right) / T, \\
\text { cal. } \\
\text { deg. }
\end{gathered}
\] & \[
\begin{aligned}
& H_{\text {satd. }}-H_{0}^{\circ}, \\
& \text { cal. }
\end{aligned}
\] & \[
\begin{gathered}
S_{\text {satd. }} . \\
\text { cal. } \\
\text { des. } .^{-1}
\end{gathered}
\] & \[
\begin{gathered}
C_{\text {satd. }}, \\
\text { cal. } \\
\text { deg. }
\end{gathered}
\] \\
\hline \multicolumn{6}{|c|}{Crystals II} \\
\hline 10 & 0.05 & 0.16 & 1.59 & 0.21 & 0.63 \\
\hline 15 & 0.18 & 0.49 & 7.37 & 0.67 & 1.74 \\
\hline 20 & 0.38 & 0.96 & 19.28 & 1.34 & 3.05 \\
\hline 25 & 0.65 & 1.51 & 37.79 & 2.16 & 4.34 \\
\hline 30 & 0.98 & 2.09 & 82.57 & 3.06 & 5.55 \\
\hline 35 & 1.34 & 2.66 & 93.04 & 4.00 & 6.62 \\
\hline 40 & 1.73 & 3.21 & 128.5 & 4.95 & 7.59 \\
\hline 45 & 2.14 & 3.73 & 168.0 & 5. 88 & 8.29 \\
\hline 50 & 2.56 & 4.23 & 211.3 & 6.79 & 8.99 \\
\hline 60 & 3.41 & 5.12 & 307.4 & 8.54 & 10.21 \\
\hline 70 & 4.26 & 5.93 & 415.0 & 10.19 & 11.31 \\
\hline 80 & 5.10 & 6.67 & 533.7 & 11.78 & 12.43 \\
\hline 90 & 5.93 & \(\bigcirc .40\) & 665.6 & 13.33 & 14.18 \\
\hline 100 & 6.75 & 8.16 & 815.6 & 14.91 & 15.78 \\
\hline 105 & 7.16 & 8.54 & 896.3 & 15.69 & 16.50 \\
\hline 110 & 7.56 & 8.91 & 980.5 & 16.48 & 17.19 \\
\hline 115 & 7.97 & 9.20 & 1068 & 17. 26 & 17.92 \\
\hline 120 & 8.37 & 9.67 & 1160 & 18.04 & 18.74 \\
\hline 125 & \(8.7 \%\) & 10.05 & 1256 & 18.82 & 19.72 \\
\hline 130 & 9.18 & 10.44 & 1357 & 19.62 & 20.84 \\
\hline 135 & 9.58 & 10.85 & 1465 & 20.42 & 22.10 \\
\hline 140 & 9.98 & 11.28 & 1579 & 21.26 & 2.) 80 \\
\hline 145 & 10.38 & 11.76 & 1705 & 22. 14 & 26.86 \\
\hline 150 & 10.79 & 12.36 & 1854 & 23.15 & 33.38 \\
\hline 153.98 & 11.12 & 13.01 & 2003 & 24.13 & +1.90 \\
\hline \multicolumn{6}{|c|}{Crystals I} \\
\hline 153.98 & 11.12 & 16.65 & 2564 & 27.77 & 29.01 \\
\hline 155 & 11.23 & 16.73 & 2593 & 27.96 & 29.04 \\
\hline 160 & 11.77 & 17.12 & 2739 & 28.89 & 29.21 \\
\hline 170 & 12.83 & 17.84 & 3033 & 30.67 & 29.54 \\
\hline 180 & 13.87 & 18.50 & 3330 & 32.37 & 29.84 \\
\hline 190 & 14.88 & 19.10 & 3630 & 33.99 & 30.20 \\
\hline 197.92 & 15.68 & 19.50 & 3870 & 35.23 & 30.46 \\
\hline \multicolumn{6}{|c|}{Liquid} \\
\hline 197.92 & 15.68 & 20.96 & 4148 & 36.63 & 33.52 \\
\hline 200 & 15.89 & 21.09 & 4217 & 36.98 & 33.60 \\
\hline 210 & 16.94 & 21.69 & 4555 & 38.63 & 34.02 \\
\hline 220 & 17.96 & 22.26 & 4898 & 40.22 & 34.46 \\
\hline 230 & 18.96 & 22.80 & 5245 & 41.77 & 34.94 \\
\hline 240 & 19.94 & 23.32 & 5597 & 43.26 & 35.44 \\
\hline 250 & 20.91 & 23.81 & 5954 & 44.72 & 85.96 \\
\hline 260 & 21.85 & 24.29 & 6316 & 46.14 & 36.52 \\
\hline 270 & 22.78 & 24.76 & 6684 & 47.53 & 37.12 \\
\hline 273.16 & 23.06 & 24.90 & 6802 & 47.96 & 37.32 \\
\hline 280 & 23.68 & 25.21 & 7058 & 48.89 & 37.74 \\
\hline 290 & 24.58 & 25.65 & 7439 & 50.23 & 38.37 \\
\hline 298.16 & 25.29 & 26.01 & -754 & 51.30 & 38.90 \\
\hline 300 & 25.45 & 26.09 & 7826 & 51.54 & 39.03 \\
\hline 310 & 26.32 & 26.52 & 8220 & 52.83 & 39.72 \\
\hline 320 & 27.16 & \(\underline{26.94}\) & 8621 & 54.10 & 40.45 \\
\hline
\end{tabular}
"smoothed" values in Tables VII, VIII and IX. Some entries in these tables are given to one more decimal place than is justified by the absolute accuracy in order to retain internal consistency throughout the tables.

Vapor Pressure.-The vapor pressures of cycloheptane and cycloöctane were measured from 150 to 2026 mm . by an ebulliometric method, and the vapor pressure of cycloheptatriene was measured from 5 to 144 mm . by a static method

Both methods have been described in a previous publication from this Laboratory, \({ }^{25}\) The results are listed in Tables X and XI.

Table X
The Vapor Pressure of Cycloheptane and Cycloöctane (Ebulliometric Method)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Boiling point, \({ }^{\circ} \mathrm{C}\). Water Sample} & \[
p \begin{gathered}
p\left(\begin{array}{l}
\text { (obsd.) } \\
\mathrm{mm} .
\end{array}\right.
\end{gathered}
\] & \begin{tabular}{l}
\(p\) (obsd.) \\
Antoine eq
\end{tabular} & \begin{tabular}{l}
(calcd.) \\
Cox eq.
\end{tabular} \\
\hline \multicolumn{5}{|c|}{Cycloheptane} \\
\hline 60.000 & 68.204 & 149.41 & -0.01 & 0.00 \\
\hline 65 & 74.338 & 187.57 & . 00 & +. 01 \\
\hline 70 & 80.529 & 233.72 & . 00 & . 00 \\
\hline 75 & 86.771 & 289.13 & +. 02 & . 00 \\
\hline 80 & 93.068 & 355.22 & + . 02 & -. 01 \\
\hline 85 & 99.416 & 433.56 & +. 06 & +. 01 \\
\hline 90 & 105.820 & 525.86 & + . 06 & +. 01 \\
\hline 95 & 112.281 & 633.99 & . 00 & - . 03 \\
\hline 100 & 118.793 & 760.00 & +. 01 & . 00 \\
\hline 105 & 125.364 & 906.06 & -. 11 & \(-.07\) \\
\hline 110 & 131.985 & 1074.6 & \(-.1\) & . 0 \\
\hline 115 & 138.665 & 1268.0 & \(-.2\) & \(-.1\) \\
\hline 120 & 145.387 & 1489.1 & \(+.1\) & + . 2 \\
\hline 125 & 152.178 & 1740.8 & \(+.1\) & . 0 \\
\hline 130 & 159.022 & 2026.0 & + . 2 & \(-.3\) \\
\hline \multicolumn{5}{|c|}{Cycloöctane} \\
\hline 60.000 & 96.711 & 149.41 & +0.01 & 0.00 \\
\hline 65 & 103.318 & 187.57 & - . 02 & -. 02 \\
\hline 70 & 109.977 & 233.72 & . 00 & \(+.01\) \\
\hline 75 & 116.694 & 289.13 & +. 02 & +. 02 \\
\hline 80 & 123.472 & 355.22 & -. 02 & \(-.02\) \\
\hline 85 & 130.301 & 433.56 & +. 02 & +. 01 \\
\hline 90 & 137.190 & 525.86 & +. 01 & -. 01 \\
\hline 95 & 144.133 & 633.99 & +. 06 & \(+.04\) \\
\hline 100 & 151.146 & 760.00 & -. 10 & -. 11 \\
\hline 105 & 158.203 & 906.06 & -. 03 & -. 01 \\
\hline 110 & 165.321 & 1074.6 & +. 1 & +. 1 \\
\hline 115 & 172.502 & 1268.0 & . 0 & +. 1 \\
\hline 120 & 179.738 & 1489.1 & . 0 & \(+.1\) \\
\hline 125 & 187.040 & 1740.8 & . 0 & . 0 \\
\hline 130 & 194.397 & 2026.0 & . 0 & \(-.2\) \\
\hline
\end{tabular}

Table XI
The Vapor Pressure of Cycloheptatriene (Static Method)
\begin{tabular}{|c|c|c|c|c|}
\hline \(t,{ }^{\circ} \mathrm{C}\) & 1st & \[
p(\underset{2 \mathrm{~d}}{\mathrm{obsd}}), \mathrm{mm} .
\] & Mean & \[
\begin{gathered}
p_{p}^{\left(\begin{array}{c}
\text { mean }) \\
(\text { calcd. }) \\
\text { mmm. }
\end{array}\right.},-
\end{gathered}
\] \\
\hline 0.00 & 5.52 & 5.48 & 5.50 & +0.04 \\
\hline 15.00 & 13.66 & 13.56 & 13.61 & -. 01 \\
\hline 20.00 & 18.03 & 17.96 & 18.00 & -. 01 \\
\hline 25.00 & 23.58 & 23.45 & 23.52 & -. 02 \\
\hline 30.00 & 30.49 & 30.40 & 30.44 & . 00 \\
\hline 35.00 & 39.06 & 38.92 & 38.99 & +. 01 \\
\hline 40.00 & 49.52 & 49.37 & 49.44 & . 00 \\
\hline 45.00 & 62.23 & 62.07 & 62.15 & . 00 \\
\hline 50.00 & 77.57 & 77.34 & 77.46 & -. 01 \\
\hline 55.00 & 95.92 & 95.70 & 95.81 & + . 02 \\
\hline 60.00 & 117.66 & 117.44 & 117.55 & -. 01 \\
\hline 65.00 & 143.35 & 143.08 & 143.22 & - . 02 \\
\hline
\end{tabular}

In the ebulliometric method, observations were made of the boiling and condensation temperatures of the sample and of water as the two substances boiled simultaneously at a common pressure. The pressures corresponding to the observed boiling points of water were obtained from the tabulation of
(25) G. Waddington, J. W. Knowlton, D. W. Scott, G. D. Oliver, S. S. Todd, W. N. Hubbard, J. C. Smith and H. M. Huffman, ibid., 71, 797 (1949).

Osborne, Stimson and Ginnings. \({ }^{26}\) The platinum resistance thermometer used for temperature measurements agreed within a few milli-degrees, before and after the vaporpressure determinations, with the certified temperature, \(122.360^{\circ}\), of a benzoic acid triple point cell.

In the study of cycloheptatriene by the static method, two series of measurements were made. The data of the 1 st series were obtained after material had been distilled out of the sample container until about four-fifths of the original sample remained; the data of the 2 d series were obtained after additional material was distilled out until only about one-fifth of the original sample remained. Comparison ot the two series shows that the observed values of vapor pressure were decreased a few tenths of a per cent. by distilling out the additional material. This behavior indicates that the sample contained a small amount of impurity of different volatility. The presence of such impurity introduces some uncertainty into the experimental values of vapor pressure but has little effect on the value of the heat of vaporization calculated from the vapor pressure data, because both series of measurements give almost identical values of \(\mathrm{d} \log p / \mathrm{d}(1 / T)\).

The following Antoine equations were obtained from the vapor pressure data by a least squares adjustment. \({ }^{27}\) The units are \(p\) in mm . and \(t\) in \({ }^{\circ} \mathrm{C}\).
Table XII
Molal Entropy in Cal. Deg. \({ }^{-1}\)
Cycloheptane
\begin{tabular}{|c|c|c|c|}
\hline \(0-12{ }^{\circ} \mathrm{K}\). & Debye extrapolation & 0.245 & \\
\hline 12-134.8 \({ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd. }} \mathrm{d} \ln T\) & 20.550 & \\
\hline \(134.8{ }^{\circ}\) & Transition, 1187.0/134.8 & 8.806 & \\
\hline 134.8-198.2 \({ }^{\circ}\) & Solid, graphical. \(\int C_{\text {atatd }} \mathrm{d}\) ln \(T\) & 11.323 & \\
\hline \(198.2{ }^{\circ}\) & Transition, 69.2/198.2 & 0.349 & \\
\hline 198.2-212.4 \({ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd }}\) d \(\ln T\) & 2.185 & \\
\hline \(212.4{ }^{\circ}\) & Transition, 107.5/212.4 & 0.506 & \\
\hline 212.4-265.16 \({ }^{\circ}\) & Solid, graphical, \(\int C_{8 s t d}\) d \(\mathrm{ln} T\) & 7.413 & \\
\hline \(265.12^{\circ}\) & Fusion, 449.8/265.12 & 1.697 & \\
\hline 265.12-298.16 \({ }^{\circ}\) & Liquid, graphical, \(\int C_{\text {satd, }} \mathrm{d} \ln T\) & 4.894 & \\
\hline & Entropy ( \(\pm 0.12\) ) of liquid at \(298.16^{\circ} \mathrm{K}\). & & 57.97 \\
\hline \(298.16^{\circ}\) & Vaporization 9210/298.16 & & 30.89 \\
\hline \(298.16^{\circ}\) & Gas imperfection (estimated) & & 0.02 \\
\hline \(298.16^{\circ}\) & Compression, \(R \ln (p / 760)\) & & -7.06 \\
\hline & Entropy ( \(\pm 0.30\) ) of ideal gas at \(298.16^{\circ} \mathrm{K}\). and 1 atm. & & 81.82 \\
\hline & Cycloöctane & & \\
\hline \(0-12{ }^{\circ} \mathrm{K}\). & Debye extrapolation & 0.263 & \\
\hline \(12-166.5{ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd. }}\) d \(\ln T\) & 26.805 & \\
\hline \(166.5^{\circ}\) & Transition, 1507.1/166.5 & 9.052 & \\
\hline 166.5-183.8 \({ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd, }}\) d ln \(T\) & 3.524 & \\
\hline \(183.8{ }^{\circ}\) & Transition, 114.3/183.8 & 0.622 & \\
\hline 183.8-287.98 \({ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd, }}\) d ln \(T\) & 18.586 & \\
\hline \(287.98^{\circ}\) & Fusion, 575.9/287.98 & 2.000 & \\
\hline 287.98-298.16 \({ }^{\circ}\) & Liquid, graphical, \(\int C_{\text {satd, }}\) d \(\ln T\) & 1.771 & \\
\hline & Entropy ( \(\pm 0.12\) ) of liquid at \(298.16^{\circ} \mathrm{K}\). & & 62.62 \\
\hline \(298.16^{\circ}\) & Vaporization, 10.360/298.16 & & 34.75 \\
\hline \(298.16^{\circ}\) & Gas imperfection (estimated) & & 0.01 \\
\hline \(298.16^{\circ}\) & Compression, \(R \ln (p / 760)\) & & \(-9.72\) \\
\hline & Entropy ( \(\pm 0.30\) ) of ideal gas at \(298.16^{\circ} \mathrm{K}\). and 1 atm. & & 87.66 \\
\hline & Cycloheptatriene & & \\
\hline \(0-12{ }^{\circ} \mathrm{K}\). & Debye extrapolation & 0.360 & \\
\hline 12-153.98 \({ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd. }} \mathrm{d} \ln T\) & 23.775 & \\
\hline \(153.98^{\circ}\) & Transition, 560.9/153.98 & 3.643 & \\
\hline 153.98-197.92 \({ }^{\circ}\) & Solid, graphical, \(\int C_{\text {satd }}\) d dn \(T\) & 7.455 & \\
\hline \(197.92^{\circ}\) & Fusion, 277.4/197.92 & 1.402 & \\
\hline 197.92-298.16 \({ }^{\circ}\) & Liquid, graphical. \(\int C_{\text {satd, }} \mathrm{d} \ln T\) & 14.669 & \\
\hline & Entropy ( \(\pm 0.10\) ) of liquid at \(298.16^{\circ} \mathrm{K}\). & & 51.30 \\
\hline \(298.16^{\circ}\) & Vaporization, 9250/298.16 & & 31.02 \\
\hline \(298.16^{\circ}\) & Gas imperfection (estimated) & & 0.02 \\
\hline \(298.16^{\circ}\) & Compression. \(R \ln (p / 760)\) & & -6.90 \\
\hline & Entropy ( \(\pm 0.25\) ) of ideal gas at \(298.16^{\circ} \mathrm{K}\). and 1 atm . & & 75.44 \\
\hline
\end{tabular}

\footnotetext{
(26) N. S. Osborne, H. F. Stimson and D. C. Ginnings. J. Research Natl. Bur. Standards, 23, 261 (1939).
(27) C. B. Willingham, W. J. Taylor, J, M. Pignocco and F. D. Rossini, ibid., 35, 219 (1945).
}
\begin{tabular}{lrl} 
Cycloheptane & \(\log _{10} p=\) & \(6.85271-\) \\
& & \(1330.742 /(t+216.246)\) \\
Cycloöctane & & \(\log _{10} p=\) \\
& & \(6.86173-\) \\
& \(1437.682 /(t+210.003)\) \\
Cycloheptatriene \\
& & \(\log _{10} p=\) \\
& & \(6.97032-\) \\
& \(1374.656 /(t+220.538)\)
\end{tabular}

The Antoine equations, with three empirical constants, are of a form convenient for numerical computation and are satisfactory for most purposes. However, for extrapolation outside the range of experimental measurements Cox equatiuns, with four empirical constants, are more reliable. For calculations at \(298.16^{\circ} \mathrm{K}\), for cycloheptane and cycloöctane, the following Cox equations were obtained from the vapor pressure data. The units are \(P\) in atm. and \(T\) in \({ }^{\circ} \mathrm{K}\).

Cycloheptane: \(\log _{10} P=\mathrm{A}(1-391.953 / T)\) (7)
where \(\log _{10} \mathrm{~A}=0.839609-6.9133 \times 10^{-4} T+\) \(6.4035 \times 10^{-7} T^{2}\)
Cycloöctane: \(\log _{10} P=\mathrm{A}(1-424.300 / T)\)
where \(\log _{10} \mathrm{~A}=0.839906-6.2033 \times 10^{-4} T+\)
\(5.1773 \times 10^{-7} T^{2}\)
The differences between the observed values of the vapor pressure and those calculated from the foregoing equations are listed in Tables X and XI.

The normal boiling points calculated from the equations are \(118.79^{\circ}\) for cycloheptane, \(151.14^{\circ}\) for cycloöctane and \(115.60^{\circ}\) for cycloheptatriene. The extrapolated value for cycloheptatriene is much less reliable than the directly measured values for the other two compounds. Other reported values for the boiling points are \(118.48^{\circ}\) for cycloheptane, \({ }^{8}\) \(150.70^{\circ}\) for cycloöctane \({ }^{8}\) and \(115.50^{\circ}\) for cycloheptatriene. \({ }^{23}\)
The Heat of Vaporization.-Values of the heat of vaporization, at saturation pressure at \(298.16^{\circ} \mathrm{K}\)., were computed by use of eq. 7,8 and 6 and the exact form of the Clapeyron equation. The equation of state, \(P V=R T+B P\), was assumed for the vapor; values of the second virial coefficient, \(B\), were estimated from a correlation published previously" 8 to be \(-2.7,-4.2\) and -2.3 liters at \(298.16^{\circ} \mathrm{K}\). for cycloheptane, cycloöctane and cycloheptatriene, respectively. The values obtained for the heat of vaporization are 9210,10360 and 9250 cal . mole \({ }^{-1}\) for cycloheptane, cyloöctane and cycloheptatriene, respectively, each with an estimated uncertainty of \(\pm 50 \mathrm{cal} . \mathrm{mole}^{-1}\).

The Entropy in the Ideal Gaseous State.-The experimental and derived results given in the foregoing sections were used to compute "observed" values of the entropy in the ideal gaseous state at 1 atm . pressure. These calculations are summarized in Table XII.
(28) D. W. Scott. H. I. Finke, M. E. Gross, G. B. Guthrie and H. M. Huffman, This Journal, 72, 2424 (1950).
Bartlesville, Oklahoma

\section*{[Contribution from the Department of Chemistry, University of California, Davis]}

\title{
The Vapor Pressure and Heat of Sublimation of Chromous Iodide. The ChromiumIodine Bond Energy in Chromous Iodide*
}

\author{
By Thomas L. Allen \\ Received June 11, 1956
}

The vapor pressure of \(\mathrm{CrI}_{2}\) has been determined from 943 to \(1054^{\circ} \mathrm{K}\). For sublimation at \(298.16^{\circ} \mathrm{K}\)., \(\Delta F^{\circ}=54.0 \mathrm{kcal} . /\) mole, \(\Delta H^{\circ}=71.4 \mathrm{kcal} . / \mathrm{mole}\), and \(\Delta S^{\circ}=58.4 \mathrm{cal} . / \mathrm{deg}\). mole. The average chromium-iodine bond energy in \(\mathrm{CrI}_{2}\) has been found to be \(55.7 \mathrm{kcal} . /\) mole. Experimental bond energies of this and other group Vla halides \(\left(\mathrm{CrCl}_{2}, \mathrm{CrCl}_{3}, \mathrm{CrCl}_{4 r} \mathrm{MoI}_{2}\right.\) and \(\mathrm{WCl}_{6}\) ) are compared with bond energies calculated theoretically.

The chromium-iodine bond energy in \(\mathrm{CrI}_{2}\) may be calculated from the heat of formation of \(\mathrm{CrI}_{2}(\mathrm{c})\), the heats of atomization of chromium and iodine, and the heat of sublimation of \(\mathrm{CrI}_{2}\). Only the latter quantity has not been measured previously. It was determined from the change in vapor pressure of \(\mathrm{CrI}_{2}\) with temperature, using the transpiration method (sciturated vapor flow method).

\section*{Experimental}

Chromous iodide was prepared from the elements by the method of Handy and Gregory, \({ }^{1}\) using Fisher chromium powder ( \(98 \%\) pure) and Mallinckrodt iodine (A.R.). Analysis for iodine by ignition to \(\mathrm{Cr}_{2} \mathrm{O}_{3}\) gave \(82.9 \% \mathrm{I}\) (stoichiometric for \(\mathrm{CrI}_{2}, 83.0 \% \mathrm{I}\) ). Operations with the \(\mathrm{CrI}_{2}\) were conclucted in a dry box under a nitrogen atmosphere.

The \(\mathrm{CrI}_{2}\) was sublimed into a transpiration tube of the type described by MacLaren and Gregory. \({ }^{2}\) Fused quartz glass was used for those parts of the apparatus within the furnace. The end of the collector tube extending into the transpiration chamber was made of 1.5 mm . bore capillary tubing to decrease diffusion of \(\mathrm{CrI}_{2}\) into the collector. Dow Corning silicone high vacuum grease was used on stopcocks and ground joints.
Measurements were made on two samples of \(\mathrm{CrI}_{2}\). The first was sublimed into the transpiration chamber from a mix-
* Presented at the 130 th National Meeting of the American Chemical Society, Atlantic City, N. J., September. 1956.
(1) L. L. Handy and N. W. Gregory, This Journal, 72, 5049 (1950).
(2) R. O. MacLaren and N. W. Gregory, J. Phys. Chem., 59, 184 (1955).
ture of chromous iodide and unreacted chromium. The second was sublimed from pure \(\mathrm{CrI}_{2}\). In each case the sample bulb was left attached to the transpiration chamber. During the initial state of sublimation of the second sample, a temporary leak developed in the vacuum system. Air from this source oxidized a small amount of the \(\mathrm{CrI}_{2}\). The oxidation product (green in color, probably \(\mathrm{Cr}_{2} \mathrm{O}_{3}\) ) was not volatile at the temperature of the vapor pressure measurements.

Argon (Linde Air Products Co.) was used as the carrier gas. It was passed through a flowmeter of the capillary type which was fitted with an overfiow tube. Oxygen and water vapor were removed by means of hot copper and magnesium perchlorate, respectively.
The furnace (Hevi-Duty, Type HDT-1712) was lined with a nickel tube of one-quarter inch wall thickness, and the ends were insulated with asbestos. Temperature control was provided by a chromel-alumel thermocouple, located between the nickel tube and the heating coils, and a Minneapolis-Honeywell controller. Along the last three inches of the transpiration chamber the temperature was constant to within \(\pm 1^{\circ}\).
A chromel-alumel thermocouple, calibrated with a Na tional Bureau of Standards certified platinum vs. platinumrhodium thermocouple, was used for temperature measurement in the first set of experiments. After that, the platinum vs. platinum-rhodium thermocouple was used directly. The hot junction was placed next to the transpiration chamber.

After the nitrogen in the transpiration tube was replaced with argon, the furnace was heated rapidly. When the temperature had reached \(100^{\circ}\) below the set temperature, the flow of argon was stopped. It was started again when the temperature was constant at the desired value. The experiment was stopped by shutting both stopcocks and re-```


[^0]:    (19) H. F. Stimson, J. Research Natl. Bur. Standards, 42, 209 (1949).
    (20) H. J. Hoge and F. G. Brickwedde, ibid., 22, 351 (1939).

